HOMEWORK 1 415G 001 COMBINATORICS AND GRAPH THEORY

DUE FRIDAY 9/02

Exercises to work in class

1. Prove by induction that $1^{3}+2^{3}+\ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$. Then show that $(1+2+\cdots+n)^{2}=$ $1^{3}+2^{3}+\cdots+n^{3}$.
2. Prove by induction that for $a \neq 1,1+a+a^{2}+\cdots+a^{n}=\frac{1-a^{n+1}}{1-a}$.
3. Prove that for positive integers $a>b$ there exist unique non negative integers q and r such that $a=q b+r$ with $0 \leq r<b$.

Exercises to submit as homework

4. Use strong induction to show that any positive integer $n \geq 1$ can be expressed as a sum $n=2^{a_{1}}+2^{a_{2}}+\cdots+2^{a_{r}}$ of powers of 2 , where $a_{1}>a_{2}>\cdots>a_{r} \geq 0$ (all a_{i} 's are distinct).
5. Prove that for every integer x, if x is odd then there exists an integer k such that $x^{2}=8 k+1$.
6. Let F_{n} be the number of binary sequences (sequences of ones and zeros) of length n (for example 1101 is a binary sequence of length 4). There is a unique sequence of length 0 , the empty sequence. Also having a binary sequence of length n we can obtain one binary sequence of length $n+1$ by adding either a trailing 0 or 1 , so there is always twice as much binary sequences of length $n+1$ than binary sequences of length n, i.e., $F_{n+1}=2 F_{n}$. Guess a closed formula for F_{n} and prove that the formula is correct using induction.
7. Find a bijection (and prove that your map is indeed a bijection) between the power set $\mathcal{P}([n]):=\{A \mid A \subseteq[n]\}$ of the set $[n]:=\{1,2, \ldots, n\}$ and the set \mathcal{B}_{n} of binary sequences of length n. Use the previous exercise to conclude a formula for the cardinality of $\mathcal{P}([n])$.
