HOMEWORK 3 415G 001 COMBINATORICS AND GRAPH THEORY

DUE FRIDAY 9/23

Exercises

1. How many arrangements of a deck of 52 cards has exactly k runs of hearts? (A run is a group of consecutive objects)
2. How many arrangements are there with $n 0$'s and $m 1$'s, with k runs of 0 's where each run of 0 's has at least three 0 's (so $n \geq 3 k$)? (A run here is a group of consecutive letters that are repeated, for example the arrangement $\underline{00001100011100000}$ has three runs of 0 's and each run of 0 's has at least three 0 's.)
3. How many arrangements of the letters in STATISTICS have all of the following properties simultaneously?

- No consecutive Ss
- Vowels in alphabetical order
- The 3 Ts are consecutive (appear as 3 Ts in a row)

4. How many integer solutions are there to $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=31$ with
(a) $x_{i} \geq 0$ for all $i \in[5]$
(b) $x_{i}>0$ for all $i \in[5]$
(c) $x_{i} \geq i$ for all $i \in[5]$
5. Prove the following theorem:

Theorem. Let M be a multiset with n objects, λ_{1} of type $1, \lambda_{2}$ of type $2, \ldots$, and λ_{k} of type k, where $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}=n$. Then the number of ordered arrangements (multipermutations or multiset permutations) of the objects in M is

$$
\frac{n!}{\lambda_{1}!\lambda_{2}!\cdots \lambda_{k}!}
$$

(This number is also denoted $\binom{n}{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}}$ and called the multinomial coefficient)

Suggested exercises

From the book. 1.5, 1.13, 1.14, 1.15, 1.16

Additional.

1. How many ways are there to pick a collection of 10 coins from piles of pennies, nickels, dimes and quarters?
2. How many ways are there to arrange the letters in MISSISSIPPI?
3. How many different n th-order partial derivatives does a function $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ have?
4. How many ways are there to arrange the 26 letters of the alphabet so that no pair of vowels appears consecutively?
