HOMEWORK 6 415G 001 COMBINATORICS AND GRAPH THEORY

DUE FRIDAY 10/21

Exercises

1. A plane tree is a rooted tree (it has one special node called the root) defined recursively as follows:

- A single vertex - (the root) is a plane tree.
- If we attach a new root connecting to all the roots of an ordered sequence $\left(P_{1}, P_{2}, \cdots, P_{k}\right)$ of plane trees we obtain a plane tree.
Figure 1 shows all plane trees with 4 vertices. Prove that the number P_{n} of plane trees with n vertices is C_{n-1} the ($n-1$)-th Catalan number by exhibiting a bijection with a family of known Catalan objects. (Hint: Find a bijection with Dyck paths or with Ballot sequences).

Figure 1. Plane trees with 4 vertices
2. Are the following pairs of graphs isomorphic? Explain why.

(b)
3. For a graph G let \bar{G} be the graph with the same vertex set as G and with edge set satisfying $\{x, y\} \in E(\bar{G})$ if and only if $\{x, y\} \notin E(G) . \bar{G}$ is called the complement of G.
(a) If a graph G has n vertices, all of which but one have odd degree, how many vertices of odd degree are there in \bar{G} ?
(b) If G is an n-vertex graph that is isomorphic to its complement \bar{G}. How many edges does G have?
4. Suppose x and y are the only vertices of odd degree in a graph G, and x and y are not adjacent to each other. Show that G is connected if and only if the graph obtained from G by adding the edge $\{x, y\}$ is connected.

Suggested exercises

Additional.

1. A graph is called regular if all vertices have the same degree. Find all nonisomorphic regular simple graphs with four and five vertices.
2. Suppose all vertices of a graph G have degree d, where d is an odd number. Show that the number of edges of G is a multiple of d.

From the book. 3.1, 3.2, 3.3, 3.4, 3.5, 3.6

