
REVIEW OF MATHEMATICAL PROOFS
415G 001 COMBINATORICS AND GRAPH THEORY

1. What is the purpose of a mathematical proof?

The purpose of a proof in mathematics is to assert the veracity/falsity of a logical statement
(one that can be assigned the value of True/False) by means of a deductive exercise that starts
with a set of axioms (statements that are assumed to be true without dispute) and other theorems
(statements that have been proven true by the same deductive method within the same set of
axioms). In the sciences (Physics, Chemistry, Social sciences, etc.) statements are not being
proved but instead evidence is collected to increase its support. For example, in the scientific
method we look to falsify a scientific hypothesis using any of its falsifiable conclusions and when
the hypothesis is not falsified then it acquires greater support from the scientific community. A
mathematical statement cannot be proven by gathering evidence that it holds in certain cases.
However a mathematical statement can be proven false by showing a single example where the
statement does not hold (a counterexample). So there is an asymmetry between proving a
statement true or false. Showing that a statement is false is in general “easier” since normally
amounts to exhibit a counterexample, on the other hand showing that a statement is true requires
to prove it holds for every possible case. Of course a statement is either true or false and it is
impossible to prove the opposite.

Example 1.1. Statement: Every natural number is divisible by 2. Counterexample: 3 is
a natural number and 2 does not divide 3 hence the statement is false.

2. What to take into account when writing a mathematical proof?

(1) Remember that you write a proof to be read by someone else. So you need to take
into account what is the background of your intended audience. For 415G you should
assume that any of your fellow classmates will be reading your proof and should be able
to understand it.

(2) Have very clear what is the statement that you are intending to prove and what is the
technique or method that you are going to use to prove it. A useful approach is to put
in writing at the beginning of your proof what are you going to show and how this will
imply your theorem.

(3) State clearly what are the axioms and theorems that you are assuming to be true in your
proof.

(4) Be clear, organized and frugal in your exposition: do more with less (but without sacri-
ficing correctness and readability).

(5) Introduce all the notation that you are going to use unless it is widely known to all of
your audience (this is almost never the case).

(6) Use delimiters that indicate to the reader whether you are stating a theorem, proving it
or simply providing context to the reader. Use words like Theorem, Lemma, Proposition,
Claim and Proof. It is a common practice to use some symbol to denote when a proof is
finished. Probably the most common is the use of the “Halmos symbol” � at the end
of a proof.

3. Proof techniques

We recall some of the most commonly used proof principles and techniques.
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3.1. Mathematical induction. This is one of the most commonly used proof techniques in
mathematics. We want to prove a statement of the form P (n) that holds for every number
n ≥ n0 where n0 is a fixed natural number. For example the statement

P (n) : ∀n ≥ 1

[
n∑

i=1

i =
n(n+ 1)

2

]
.

The technique involves two steps:

(1) Initial step: Prove that P (n0) is true for the minimal number n0.
(2) Inductive step: Show that whenever P (n− 1) is true then P (n) is also true.

Example 3.1. For the example above we have

(1) Initial step:
1∑

i=1

i = 1 =
1(1 + 1)

2
.

(2) Inductive step: Assume that P (n− 1) is true, that is

n−1∑
i=1

i =
(n− 1)n

2
.

Then
n∑

i=1

i =
n−1∑
i=1

i+ n using the definition of
∑

=
(n− 1)n

2
+ n using the induction hypothesis

=
(n− 1)n+ 2n

2
using the properties of R as a field

=
n(n+ 1)

2
.

Hence by the principle of mathematical induction P (n) is true for all n ≥ 1.

Nonexample 3.2. Prove that

P (n) : ∀n ≥ 1

[
n∑

i=1

i =
n2 + n+ 2

2

]
.

(1) Inductive step: Assume that P (n− 1) is true, that is

n−1∑
i=1

i =
(n− 1)2 + (n− 1) + 2

2
.

Then
n∑

i=1

i =
n−1∑
i=1

i+ n using the definition of
∑

=
(n− 1)2 + (n− 1) + 2

2
+ n using the induction hypothesis

=
n2 − 2n+ 1 + n− 1 + 2 + 2n

2
using the properties of R as a field

=
n2 + n+ 2

2
.
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Then the principle of mathematical induction would “imply” that P (n) is true for all n ≥ 1.
Clearly this cannot be possible since it is not true that

n(n+ 1)

2
=

n∑
i=1

i =
n2 + n+ 2

2
.

The problem is indeed that we missed to check that the hypothesis is true for the initial value
of n. In fact,

1 6= 12 + 1 + 2

2
.

This example illustrates that both the initial step and the inductive step are require to hold in
order for an induction proof to be valid.

3.1.1. Strong induction. A slight modification of the principle above requires that we only prove
the following:

(1) Inductive step: Show that for all n ≥ n0 if P (k) is true for all the values of k such that
n0 ≤ k < n then P (n) is also true.

Remark 3.3. Note that the statement above has to be proven for all n ≥ n0, including the initial
value n0. So it does not mean that in this form of the principle of induction initial values are
not checked.

Example 3.4. A natural number n ≥ 2 is said to be prime if whenever we express n as n = ab
then either a = n or b = n. If n 6= 1 is not prime then is said to be composite. Prove that any
natural number n ≥ 2 can be expressed as a product of primes.

P (n) : ∀n ≥ 2 [n = p1p2 · · · pk where pi is prime ∀i] .

(1) Inductive step: Let n ≥ 2 and assume that any k such that 2 ≤ k < n is a product of
primes.

There are two cases:
• If n is prime then trivially n is a product of 1 prime.
• If n is not prime then n can be expressed as n = n1n2 where n1 and n2 are not n

and so n1 < n and n2 < n. But then by the inductive hypothesis both n1 and n2

are products of primes and so it is n.
These two cases cover all possible values of n with n ≥ 2. Then by strong induction P (n)
is true for all n ≥ 2.

3.2. Constructive and nonconstructive proofs. Sometimes we want to show that certain
mathematical object with certain given properties exists (we want to prove existence). The
purpose of a constructive proof is to show explicitly that such an object exists. On the other
hand, if we are able to show that such an object must exist without explicitly exhibiting it, such
a proof is said to be nonconstructive.

Example 3.5. Statement: There exists a pair of irrational numbers a and b such that ab is
rational.

• Nonconstructive proof: Let a = b =
√

2. If ab =
√

2
√
2

is not rational then we instead

let a =
√

2
√
2

and b =
√

2. We have that ab = (
√

2
√
2
)
√
2 = 2 that is rational. Note that

we never concluded if our example for the theorem was a = b =
√

2 or a =
√

2
√
2

and
b =
√

2.
• Constructive proof: Let a =

√
3 and b = log3 4. Note that b is irrational since

otherwise log3 4 = p
q

for nonzero integers p and q and hence 4 = 3
p
q or 4q = 3p which is a

contradiction. But then ab =
√

3
log3 4 = 2 that is rational. Note that here we explicitly

showed a pair of objects that make the statement true.
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3.3. Proof by contradiction. In a proof by contradiction we suppose (as if it were an addi-
tional axiom) that the statement P is false (not P is true) and look for deriving a contradiction.
If we arrive to a contradiction this means that our initial supposition was wrong.

Example 3.6. Theorem: There are infinitely many prime numbers.
Proof: Suppose that the statement is false, that is, we assume that there are finitely many

prime numbers p1, p2, . . . , pk. Now consider the number m = p1p2 · · · pk+1. None of p1, p2, . . . , pk
divides m that is a contradiction with the fact that m is a product of primes (we know this by
our previous theorem). Then our supposition that there are finitely many prime numbers must
be incorrect and the theorem is proved.

Example 3.7. Theorem:
√

2 is irrational.
For the proof we will assume that the following lemma has been proven.

Lemma 3.8 (Euclid’s lemma). If p is a prime number and p|ab then p|a or p|b.

Proof: Suppose that
√

2 is not irrational then
√

2 = p/q for some integers p and q that we can
choose to be relatively prime (gcd(p, q) = 1). Then 2 = p2/q2 or 2q2 = p2 implies 2|p (Euclid’s
lemma) and so p = 2k for some k. But then 2q2 = (2k)2 = 4k2 or q2 = 2k2 and 2|q contradicting
the fact that gcd(p, q) = 1. Then

√
2 must be irrational.

3.4. Contrapositive. Sometimes when we want to prove a statement of the form “If P then
Q” we can prove instead the logically equivalent statement “If Q is not true then P is not true”.

Example 3.9. Statement: If the power set P(A) := {B | B ⊆ A} of a set A is finite then A
is finite.

Contrapositive: If A is not finite then its power set P(A) is not finite.
Contrapositive(rephrased): If A is infinite then its power set P(A) is infinite.
Note that in this case the contrapositive is a bit easier to prove since there is an injective map

φ : A→ P(A) given by a 7→ {a} and so |A| ≤ |P(A)|.

3.5. Uniqueness. It is common in mathematics that we need to show that certain object (that
we have already shown that exists either constructively or not) it is the unique object with its
properties.

Example 3.10. Statement Show that the unique factorization n = p1p2 · · · pk is unique up to
reordering of the prime factors.

Proof Assume that n is minimal with the property of having two different factorizations
n = p1p2 · · · pk = q1q2 · · · qr. Then p1|q1q2 · · · qr and using Euclid’s lemma we conclude that p1
divides some qj and by reindexing we can assume without loss of generality that p1|q1 and so
p1 = q1. Now dividing n by p1 = q1 we have that n

p1
= p2 · · · pk = q2 · · · qr. By the minimality of

n (Strong induction) we have that any factorization of n
p1

is unique so we have that k−1 = r−1

and after reindexing that all the primes pi = qi for i ≥ 2. Hence the prime factorization of n is
unique up to reordering.
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